Physical-biological interactions and population dynamics of Calanus finmarchicus

Temperature (C) at 5 meters, 06 Jan 1993

C. finmarchicus climatology: Globec Broadscale surveys 1995-1999

Durbin et al. http://globec.gso.uri.edu/

C. finmarchicus model

$\frac{\partial C_i}{\partial t} + v \cdot \nabla C_i - \nabla \cdot (K \nabla C_i) = \delta_{i1} R - F_i + (F_{i-1} - \mu_i C_i)(1 - \delta_{i1})$

 μ_i : mortality C_i off-bank

 F_i : molting flux \rightarrow $F_i(T, Chl)$ computed (Campbell et al. 2001) *R*: sources of N_3 Inferred (monthly) Inferred (monthly) Inferred (initial conditions)

 $N_3 \rightarrow N_4 \rightarrow N_5 \rightarrow N_6 \rightarrow C_1 \rightarrow C_2 \rightarrow C_3 \rightarrow C_4 \rightarrow C_5 \rightarrow C_5 \rightarrow C_6 \rightarrow C_6$ R μ_{N5} μ_{N6} μ_{C1} μ_{C2} μ_{C3} μ_{C4} μ_{C5} μ_{C6} μ_{N4}

C. finmarchicus solution: January- June

Inferred Mortality

Jan-Feb Feb-Mar Mar-Apr Apr-May May-Jun

Are the inverse solutions ecologically realistic?

Predation potential: Model predicted rates of 3-10% day⁻¹

Bollens et al. specific rates of predation on *C. finmarchicus* and *Pseudocalanus* spp. copepodites based on observed predator abundance and feeding rates

http://userwww.sfsu.edu/~bioocean/research/gbpredation/gbpredation1.html

January-June average mortality rate

Ohman et al. 2002 Vertical life table

This study

Term-by-term analysis

Transport terms: large magnitude, but net effect is small Primary balance: tendency/molting/mortality A prior model of *C. fin* in the region

A numerical experiment: turn off the upstream sources of *C. finmarchicus* to GB

Spatially averaged mortality rate

Stage

Biological control of the vernal population increase of *C. finmarchicus* on Georges Bank

 $\hat{\mu}_i$ only slightly smaller than μ_i

Li et al., 2006

Models as tools for hypothesis testing

Climate forcing of *C. finmarchicus* Feb populations of the North Atlantic

McGillicuddy, Bucklin, Haidvogel, Wiebe

C. finmarchicus climatology from the Continuous Plankton Recorder (Planque et al., 1997; recent update by G. Beaugrand)

The three-gyre hypothesis

Bucklin et al., 2000; Wiebe, 2001

Genetic basis for the three-gyre hypothesis

Bucklin and Unal

Allele frequencies for eight SNPs in the gene encoding a heat shock protein (HSP-70) for six geographic populations of *C. finmarchicus*.

Overall Objectives

- Inversions of the "mean state"
 - Climatological mean seasonal forcing
 - Diapause entry hypotheses: food, photoperiod
 - Diapause exit hypotheses: development, photoperiod
 - Control parameter: mortality (spatially variable, stage dependent
 - Skill assessment: cross-validation
- Use the genetic data to estimate the rate of population exchange between gyres, and compare with model predictions of same
- Investigate interannual to decadal variability
 - High-NAO state vs. low-NAO state
 - Hindcast 1950s-present

Three models

1. Advection-diffusion

$$\frac{\partial C}{\partial t} + v \cdot \nabla C - \nabla \cdot (K \nabla C) = 0$$

2. Persistence

 $C(t_1 + \Delta t) = C(t_1)$

3. Rudimentary biology: geographic source term

 $\frac{\partial C}{\partial t} + v \cdot \nabla C - \nabla \cdot (K \nabla C) = R(x, y) \qquad C = \max(C, 0)$ Poor man's adjoint: $R(x, y) = \frac{C_{obs}(t + \Delta t) - C_{obs}(t)}{\Delta t}$

Skill

Vertical distribution: issues

Assume uniform distribution of *C. finmarchicus* in mixed layer, zero below

MLD deepening dilution by entrainment of water with low concentration of *C. finmarchicus*

MLD shoaling detrainment of *C. finmarchicus* below the mixed layer

GLOBEC study sites in the North Atlantic Wiebe et al., 2007

