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Introduction

Calanus copepods in the north Atlantic - Arctic region

• Play a key role in the north Atlantic and Arctic pelagic ecosystem
(”wasp-waist” species)

• Unique biogeographic boundaries; Warming and decreasing seasonal
ice cover might cause the shift of boundaries.

• Critical to understand how the combinations of life hisotry, physical
advection, seasonality, and food environment limits their ranges.
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Background

Estimated boundary of
Calanus finmarchicus

• Endemic in the NN Atlantic,
such as GIN Seas.

• Immigration (non-sterile
expatriation) to S. Barents
Sea, North Sea and NW
Atlantic.

• Expatriation to the Polar
Basin (fail to reproduce due
to low T).

Figure: Jaschnov, 1970
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Background

Conceptual view

• C. finmarchicus: adapted to
warm Atlantic water; expatriate
to the Arctic; low T and food
limit reproduction in the Arctic.

• C. glacialis: adapted to cold
Arctic water; most dorminant
on the Arctic shelves.

• C. hyperboreus: also adapted to
cold Arctic water; population
center in the central Arctic
Basin; expatriate on the Arctic
shelves and in subarctic region.
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Methods

Overall approach
• FVCOM-based IBM approach, including 3-D ”offline” Lagrangian

tracking and stage-based copepod modules.

• Eggs (N4 for Chyp) released from model node points at the
beginning of the growth season.

• Check whether an individual can reach the diapause stage at the
end of growth season.
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including tide and ice dynamics.

• Driven by hourly-archived FVCOM output (temperature,mixing and
current fields).
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Methods

Calanus model

• Different generation time,
varying from 1 to 3 yrs.

• Diapause at different stages,
varying from C3 to C5.

• Focus on first generation
(before diapausing).

• Temperature and food
dependent development.
D = a(T + α)β[1− e(−F/K)].
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Methods

Temperature-dependent
development

• C . finmarchicus parameter from
Campbell et al. (2001).

• C . glacialis and C . hyperboreus
parameterized to N1 only
(Corkett et al., 1986); inferred
from equiproportional rule.

• Verified C . glacialis egg
hatching time from lab exp. at
0 oC.
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Results - hydrodynamics

Model-computed currents and temperature
(example: September mean)

rji
Text Box
WSC

rji
Text Box
EGC

rji
Text Box
NAC

rji
Text Box
RAC



Results - C . finmarchicus

Timing and location of initial releasing

• Timing based on satellite detected Chl-a concentration (for
C .finmarchicus).

• Each dot represents starting year day (in color) and location.

• Earlier in the E. Greenland Sea and the S. Barents Sea.
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Results - C . finmarchicus

Case 1
Dev=f (T); Surface

• Individuals in the S. GIN
Seas and S. Barents Sea
successfully reach C5.

• No penetration into the
Arctic Basin, possibly due to
low T and short GSL.

• Individuals that failed to
reach diapause not advected
into the Arctic Basin by the
end of growth season.
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Results - C . finmarchicus

Case 2a
Dev=f (T,food); Surface

• Successful individuals
located further south.

• Match with estimated
boundaries near the Polar
Front and the Arctic Front.

• Food availability plays an
important role.
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Results - C . finmarchicus

Case 2b
Dev=f (T,food); 50 m

• Similar to the surface case
(2a).

• Successful individuals
further south (possibly due
to lower summer T at 50m)

• Eastward advection of
successful individuals along
the shelf-break to the north
of Spitzbergen.
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Results - C . finmarchicus

Case 3
Advection during diapause

• Continued transport of
successful individuals at
depth (300 m or 10 m above
bottom) until mid next yr

• The advection transport is
very limited: few diapausing
individuals advected into the
Arctic Ocean during the
winter
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Results - C . glacialis

Timing and location of initial releasing

• Initial date based on the satellite-derived onset of snow melt
at each grid (NSIDC).

• End of growth season based on daily mean of shortwave
radiation at each grid.

Initial timing (yd)
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Results - C . glacialis

C . glacialis

• Succeeded on the Arctic shelves and surrounding marginal seas.
• Failed in the central Arctic Basin.
• The GIN Seas and S. Barents Sea diff from historial view.

Succeeded
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Results - C . glacialis

C . glacialis

• Succeeded on the Arctic shelves and surrounding marginal seas.
• Failed in the central Arctic Basin.
• Ice may provide favorible condition (ice algae as food) + high T.
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Results - C . hyperboreus

C . hyperboreus

• Show similar pattern as C . glacialis.
• Successful inds. extended further into the central Basin.
• Inds. in the central Basin failed to reach C3.
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Summary

• A spatially-explicit IBM has been developed to investigate the
processes controlling the biogeographic boundaries of Calanus
copepods in the Arctic - North Atlantic region.

• The modeled distribution matchs with the previously
observed/estimated biogeographic boundries for C . finmarchicus
and most of C . glacialis, but not C . hyperboreus.

• Model suggests that C . finmarchicus is unable to penetrate into the
Arctic Ocean under present conditions.

• Neither C . glacialis nor C . hyperboreus can reach their diapause
stages in the central Arctic Basin, suggesting either the growth
parameters are incorrect or the growing season is longer; or C .
hyperboreus is not endemic in the central Basin.
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Issues

• Parameters and vital rates: Food dependency; Temperature
dependency (Equiproportional rule).

• Determination of GSL: Snow melting and light intensity as proxy for
C . glacialis and C . hyperboreus.

• Improved mapping of current biogeographic boundary; Warming
scenario testing.
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