
Matlab
An Introductory Workshop

Jamie Pierson

UMCES HPL

21 January 2011

Part I:

Objectives &

Introduction

Outline

1. Objective and Goals for today

2. Introduction to Matlab

3. Graphics

4. Statistics

5. Mapping

6. Matlab and Text (time permitting)

Objectives and Goals

After today you will

–Know what Matlab is and isn’t

–Be able to preform basic Matlab operations

–Have a set of tools to find help

–Have more questions than answers

Disclaimer 1

This is not a comprehensive course, it is an
introduction with tips.

Matlab is HARD and will take a long time to
master.

Matlab is incredibly versatile, powerful, and
useful, so it’s worth the time and money
investment.

Some suggestions

• Have a problem you need to use Matlab to

solve – it makes learning easier when you have

a goal.

• Find programs that have been written to do

things you know or need then take them apart

to understand them

• Use the tutorials and resources that come with

Matlab.

Me?

I began using Matlab in 1995.

 Really.

I am not a programmer, I don’t think like one,

and I’m really glad there are programmers out

there so I can do oceanography.

I can accomplish things in Matlab, but it’s not

usually pretty.

Do as I say, not as I do.

You.
Demographics

Student 15

FRA 6

Postdoc 3

Experience

None 5

Little 4

Some 16

Operating System

PC 10

Mac 3

Linux 1

Topic

Plotting/Graphics 9

Stats 5

Mapping 4

Programming 4

Data Manipulation 3

Time Series (2)

Solving Eq (1)

Kriging (1)

Why Matlab?

• Powerful computing environment

• Large online community

• Support from Mathworks

• Adaptability via toolboxes

• Interoperability with other languages and

programs: e.g. maple, fortran, C++, Java, etc.

Free Alternatives

• SciLab

• Octave

• FreeMat

Why not use them?

No or very little support.

Not exact syntax.

Less stable.

Compatability.

Legacy.

What is Matlab?

Matrix Laboratory

• Matlab is an environment for scientific computing

• Essential features:

– Workspace--contains your data

• named arrays of numbers

– Language--a set of basic commands for manipulating data

• assignment (=), dereferencing (()), arithmetic (+-*/^), logic (&|~),
control (for,while, if-else, switch)

– Functions--more complicated commands built with core
language

• mean, min, max, statistics, signal-processing, graphics,

• YOUR STUFF!

Adapted from A. Pershing 2010

What is Matlab?

Core

Language

Command Window

>>foo=1:5

>>bar=ones(3,1)*foo

Built-in

functions

User-

defined

functions

Workspace

foo--

bar--

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Calls

Adapted from A. Pershing 2010

The Matlab Window

•Tabs

•Command window

•Workspace

•Variable Editor

•Editor

•Command History

•Working Directory

The Matlab Window

•Tabs

•Command window

•Workspace

•Variable Editor

•Editor

•Command History

•Working Directory

The Matlab Window

•Tabs

•Command window

•Workspace

•Variable Editor

•Editor

•Command History

•Working Directory

The Matlab Window

•Tabs

•Command window

•Workspace

•Variable Editor

•Editor

•Command History

•Working Directory

The Matlab Window

•Tabs

•Command window

•Workspace

•Variable Editor

•Editor

•Command History

•Working Directory

The Matlab Window

•Tabs

•Command window

•Workspace

•Variable Editor

•Editor

•Command History

•Working Directory

The Matlab Window

•Tabs

•Command window

•Workspace

•Variable Editor

•Editor

•Command History

•Working Directory

The Matlab Window

•Tabs

•Command window

•Workspace

•Variable Editor

•Editor

•Command History

•Working Directory

The Matlab Window

•Tabs

•Command window

•Workspace

•Variable Editor

•Editor

•Command History

•Working Directory

Some Syntax for Today and

Matlab Help

Capitals denote 2D arrays:

 X Y

Lowercase denotes 1D or

vector arrays:

 x y

Courier New font shows

commands to type into

Matlab at the Matlab

Prompt*

>> plot(x,y);

>> pcolor(X,Y,Z);

* This is inconsistent in these slides, and I apologize, but I will try to fix

it up before it goes online.

HELP!

1. >> help [FUNCTION]

will give you information about a function in the

command window

2. >> doc [FUNCTION]

will open up the help browser with the same

information from 1, but in a separate window.

Basic Math

• Matlab is a command-line calculator

– Simple arithmetic operators

• + - * / ^ \

– Basic functions

• sin(), log(), log10(), exp(), rem()

– Constants

• pi

– Blanks etc.

• NaN: Not a Number

• Inf: infinity

Adapted from A. Pershing 2010

Command History

• Matlab remembers your commands

• Use to go back/forward in time

• Type the first few letters of command , then

use to recall commands beginning with that

letter

Adapted from A. Pershing 2010

Workspace

• Contains your data (variables)

• “who” lists variables

• “whos” lists variables + details

• Use “clear” to delete variables

– clear deletes everything!

– clear A B deletes A and B

– clear –except A … deletes everything except A

– Use “help clear” or “doc clear” to find out more!

Adapted from A. Pershing 2010

1D Arrays--aka Vectors

• An array is anything you access with a
subscript

• 1D arrays are also known as “vectors”

• Everything (nearly) in Matlab is a “double
array”

• Create arrays with brackets []

• Separate elements in a row with commas or
spaces, separate rows with semicolon

• Access with ()’s

Adapted from A. Pershing 2010

Regular arrays

• Create arrays using “:”
– A=st:en produces [st, st+1, st+2, … en]

>> A=1 : 5

A =

 1 2 3 4 5

>>A=-3.5 : 2

A =

 -3.5 -2.5 -1.5 -0.5 0.5 1.5

– Can also insert a “step” size
>> A=0 : 2 : 6

A =

 0 2 4 6

>> A=5 : -2.5 : 0

A =

 5 2.5 0

Adapted from A. Pershing 2010

Accessing vectors

• Matlab arrays start at 1

• In most languages (C, Java, F77) can only access arrays one

element at a time:

– a(1)=1; a(2)=2.5; a(3)=-3; etc.

• In Matlab, can access several elements at a time using an array of

integers (aka an index)

– Ex:

• B=10:10:100

• B(2:2:10)

1 2 3 4 5 6 7 8 9 10

10 20 30 40 50 60 70 80 90 100

Adapted from A. Pershing 2010

Accessing vectors

• Matlab arrays start at 1

• In most languages (C, Java, F77) can only access arrays one

element at a time:

– a(1)=1; a(2)=2.5; a(3)=-3; etc.

• In Matlab, can access several elements at a time using an array of

integers (aka an index)

– Ex:

• B=10:10:100

• B(2:2:10)

1 2 3 4 5 6 7 8 9 10

10 20 30 40 50 60 70 80 90 100

Adapted from A. Pershing 2010

Accessing vectors

• Matlab arrays start at 1

• In most languages (C, Java, F77) can only access arrays one

element at a time:

– a(1)=1; a(2)=2.5; a(3)=-3; etc.

• In Matlab, can access several elements at a time using an array of

integers (aka an index)

– Ex:

• B=10:10:100

• B(2:2:10)

1 2 3 4 5 6 7 8 9 10

10 20 30 40 50 60 70 80 90 100

1 2 3 4 5

20 40 60 80 100

Adapted from A. Pershing 2010

Accessing vectors

• Index vectors can be variables:
>>B=10:10:100;

>>I=2:2:10;

>>B(I)

 [20,40,60,80,100];

>>J=[1:2:9];

>>B(J)

 [10,30,50,70,90]

– What does B(I)=B(J) do?

Adapted from A. Pershing 2010

Column vectors

• “row vectors” are 1-by-n

• “column vectors” are n-by-1

• Row/column distinction doesn’t exist in most languages,

but VERY IMPORTANT in MATLAB

• Create column vectors with semi-colons

– A=[1; 2; 3]

• Can force to column vector with (:)

– A=1 : 3 is [1 2 3]

– A(:) is

 1

2

3

Adapted from A. Pershing 2010

• Convert column-to-row and back with

transpose (’)

• Can access the same way as row vectors

Column vectors

Adapted from A. Pershing 2010

2D arrays--matrices

• From using commas/spaces and

semi-colons

– A=[1 2 3; 4 5 6; 7 8 9];

– A(j,k)= j’th row, k’th column

• A(1:2,2:3)

1 2 3

4 5 6

7 8 9

Adapted from A. Pershing 2010

2D arrays--matrices

• From using commas/spaces and

semi-colons

– A=[1 2 3; 4 5 6; 7 8 9];

– A(j,k)= j’th row, k’th column

• A(1:2,2:3)= rows 1 through 2

and columns 2 through 3

• A([1,3,2], :)

1 2 3

4 5 6

7 8 9

2 3

5 6

Adapted from A. Pershing 2010

2D arrays--matrices

• From using commas/spaces and

semi-colons

– A=[1 2 3; 4 5 6; 7 8 9];

– A(j,k)= j’th row, k’th column

• A(1:2,2:3)= rows 1 through 2

and columns 2 through 3

• A([1,3,2], :)= all of rows 1, 3

and 2

• A(:, 1)

1 2 3

4 5 6

7 8 9

2 3

5 6

1 2 3

4 5 6

7 8 9

1 2 3

7 8 9

4 5 6

Adapted from A. Pershing 2010

2D arrays--matrices

• From using commas/spaces and

semi-colons

– A=[1 2 3; 4 5 6; 7 8 9];

– A(j,k)= j’th row, k’th column

• A(1:2,2:3)= rows 1 through 2

and columns 2 through 3

• A([1,3,2], :)= all of rows 1, 3

and 2

• A(:, 1)= first column

• A(3,:)=

1 2 3

4 5 6

7 8 9

2 3

5 6

1 2 3

4 5 6

7 8 9

1 2 3

7 8 9

4 5 6

1 2 3

4 5 6

7 8 9

1

4

7

Adapted from A. Pershing 2010

2D arrays--matrices

• From using commas/spaces and

semi-colons

– A=[1 2 3; 4 5 6; 7 8 9];

– A(j,k)= j’th row, k’th column

• A(1:2,2:3)= rows 1 through 2

and columns 2 through 3

• A([1,3,2], :)= all of rows 1, 3

and 2

• A(:, 1)= first column

• A(3,:)= last row

1 2 3

4 5 6

7 8 9

2 3

5 6

1 2 3

4 5 6

7 8 9

1 2 3

7 8 9

4 5 6

1 2 3

4 5 6

7 8 9

1

4

7

1 2 3

4 5 6

7 8 9

7 8 9

Adapted from A. Pershing 2010

Size matters

• “A is m-by-n” means A has m rows and n columns

• [m,n]=size(A) gets size of A, storing sizes in scalars m and n

– useful for error checking & getting limits on for-loops

• length(a) gets length of vectors (max of m and n).

• A(1:3,2)=v, v better be length 3 (or scalar)

• A(1:2:5,2:3)=B, B better be 3-by-2 (or scalar)

Adapted from A. Pershing 2010

Array Arithmetic

• C=A+B

– if A and B are the same size, C(j,k)=A(j,k)+B(j,k)

– If A is a scalar, C(j,k)=A+B(j,k)

• Same for -

Adapted from A. Pershing 2010

Array Multiplication

• Multiplication in Matlab is inherited from

linear algebra

– To multiply by a scalar, use *

– To get C(j,k)=A(j,k)*B(j,k) use “.*”

• Also applies to “.^” and “./”

– Otherwise it uses matrix multiplication:

p

Adapted from A. Pershing 2010

ND arrays

• Until V5, Matlab arrays could only be 2D

• Now has unlimited dimensions:

– A=ones(2,3,2)

– A is a 3D array of ones, with 2 rows, 3 columns,

and 2 layers

– A(:,:,1) is a 2-by-3 matrix

Adapted from A. Pershing 2010

Structured Arrays

A variable that contains data in “fields”

Used in “EasyKrig” (just you wait) and some statistical
functions, as well as for image analysis and other complex
functions

data

in

out

krig

vario

Nx

ny

Xg

Yg

Vg

Eg

Xp

Yp

Var

Err

Xg

Yg

Xgt

Ygt

len

lag

gammah

cnt

hm

tm

hv

tv

xx

yy

zz

nlag

c0

lag_theo

gammah_theo

Calling structured data

>> data.out.krig.Nx;

>> data.out.krig.Nx(1)

data

in

out

krig

vario

Nx

ny

Xg

Yg

Vg

Eg

Xp

Yp

Var

Err

Xg

Yg

Xgt

Ygt

len

lag

gammah

cnt

hm

tm

hv

tv

xx

yy

zz

nlag

c0

lag_theo

gammah_theo

